Back to home page

LXR

 
 

    


File indexing completed on 2025-05-11 08:24:26

0001 /* SPDX-License-Identifier: BSD-2-Clause */
0002 
0003 /**
0004  *  @file
0005  *
0006  *  @brief SPARC64 CPU Dependent Source
0007  */
0008 
0009 /*
0010  *  COPYRIGHT (c) 1989-2007. On-Line Applications Research Corporation (OAR).
0011  *
0012  *  This file is based on the SPARC cpu.c file. Modifications are made to
0013  *  provide support for the SPARC-v9.
0014  *  COPYRIGHT (c) 2010. Gedare Bloom.
0015  *
0016  * Redistribution and use in source and binary forms, with or without
0017  * modification, are permitted provided that the following conditions
0018  * are met:
0019  * 1. Redistributions of source code must retain the above copyright
0020  *    notice, this list of conditions and the following disclaimer.
0021  * 2. Redistributions in binary form must reproduce the above copyright
0022  *    notice, this list of conditions and the following disclaimer in the
0023  *    documentation and/or other materials provided with the distribution.
0024  *
0025  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
0026  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
0027  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
0028  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
0029  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
0030  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
0031  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
0032  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
0033  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
0034  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
0035  * POSSIBILITY OF SUCH DAMAGE.
0036  */
0037 
0038 #include <rtems/score/cpuimpl.h>
0039 #include <rtems/score/isr.h>
0040 #include <rtems/score/tls.h>
0041 #include <rtems/rtems/cache.h>
0042 
0043 #if (SPARC_HAS_FPU == 1)
0044 Context_Control_fp _CPU_Null_fp_context;
0045 #endif
0046 
0047 volatile uint32_t _CPU_ISR_Dispatch_disable;
0048 
0049 /*
0050  *  _CPU_Initialize
0051  *
0052  *  This routine performs processor dependent initialization.
0053  *
0054  *  INPUT PARAMETERS: NONE
0055  *
0056  *  Output Parameters: NONE
0057  *
0058  *  NOTE: There is no need to save the pointer to the thread dispatch routine.
0059  *        The SPARC's assembly code can reference it directly with no problems.
0060  */
0061 
0062 void _CPU_Initialize(void)
0063 {
0064 #if (SPARC_HAS_FPU == 1)
0065   Context_Control_fp *pointer;
0066 
0067   /*
0068    *  This seems to be the most appropriate way to obtain an initial
0069    *  FP context on the SPARC.  The NULL fp context is copied in to
0070    *  the task's FP context during Context_Initialize_fp.
0071    */
0072 
0073   pointer = &_CPU_Null_fp_context;
0074   _CPU_Context_save_fp( &pointer );
0075 
0076 #endif
0077 
0078   /*
0079    *  Since no tasks have been created yet and no interrupts have occurred,
0080    *  there is no way that the currently executing thread can have an
0081    *  interrupt stack frame on its stack.
0082    */
0083   _CPU_ISR_Dispatch_disable = 0;
0084 }
0085 
0086 void _CPU_Context_Initialize(
0087   Context_Control  *the_context,
0088   void         *stack_base,
0089   uint32_t          size,
0090   uint32_t          new_level,
0091   void             *entry_point,
0092   bool              is_fp,
0093   void             *tls_area
0094 )
0095 {
0096     uint64_t     stack_high;  /* highest "stack aligned" address */
0097 
0098     /*
0099      *  On CPUs with stacks which grow down (i.e. SPARC), we build the stack
0100      *  based on the stack_high address.
0101      */
0102 
0103     stack_high = ((uint64_t)(stack_base) + size);
0104     stack_high &= ~(CPU_STACK_ALIGNMENT - 1);
0105 
0106     /*
0107      *  See the README in this directory for a diagram of the stack.
0108      */
0109 
0110     the_context->o7    = ((uint64_t) entry_point) - 8;
0111     the_context->o6_sp = stack_high - SPARC64_MINIMUM_STACK_FRAME_SIZE - STACK_BIAS;
0112     the_context->i6_fp = 0;
0113 
0114     /* ABI uses g4 as segment register, make sure it is zeroed */
0115     the_context->g4    = 0;
0116 
0117     /* PSTATE used to be built here, but is no longer included in context */
0118 
0119   /*
0120    *  Since THIS thread is being created, there is no way that THIS
0121    *  thread can have an interrupt stack frame on its stack.
0122    */
0123     the_context->isr_dispatch_disable = 0;
0124 
0125   if ( tls_area != NULL ) {
0126     void *tcb = _TLS_Initialize_area( tls_area );
0127 
0128     the_context->g7 = (uintptr_t) tcb;
0129   }
0130 }
0131 
0132 /*
0133  *  This initializes the set of opcodes placed in each trap
0134  *  table entry.  The routine which installs a handler is responsible
0135  *  for filling in the fields for the _handler address and the _vector
0136  *  trap type.
0137  *
0138  *  The constants following this structure are masks for the fields which
0139  *  must be filled in when the handler is installed.
0140  */
0141 
0142 /*  64-bit registers complicate this. Also, in sparc v9,
0143  *  each trap level gets its own set of global registers, but
0144  *  does not get its own dedicated register window. so we avoid
0145  *  using the local registers in the trap handler.
0146  */
0147 const CPU_Trap_table_entry _CPU_Trap_slot_template = {
0148   0x89508000,   /* rdpr   %tstate, %g4       */
0149   0x05000000,   /* sethi %hh(_handler), %g2  */
0150   0x8410a000,   /* or     %g2, %hm(_handler), %g2 */
0151   0x8528b020,   /* sllx   %g2, 32, %g2 */
0152   0x07000000,   /* sethi  %hi(_handler), %g3 */
0153   0x8610c002,   /* or     %g3, %g2, %g3 */
0154   0x81c0e000, /* jmp   %g3 + %lo(_handler) */
0155   0x84102000  /* mov   _vector, %g2        */
0156 };
0157 
0158 
0159 /*
0160  *  _CPU_ISR_Get_level
0161  *
0162  *  Input Parameters: NONE
0163  *
0164  *  Output Parameters:
0165  *    returns the current interrupt level (PIL field of the PSR)
0166  */
0167 uint32_t   _CPU_ISR_Get_level( void )
0168 {
0169   uint32_t   level;
0170 
0171   sparc64_get_interrupt_level( level );
0172 
0173   return level;
0174 }
0175 
0176 /*
0177  *  _CPU_ISR_install_raw_handler
0178  *
0179  *  This routine installs the specified handler as a "raw" non-executive
0180  *  supported trap handler (a.k.a. interrupt service routine).
0181  *
0182  *  Input Parameters:
0183  *    vector      - trap table entry number plus synchronous
0184  *                    vs. asynchronous information
0185  *    new_handler - address of the handler to be installed
0186  *    old_handler - pointer to an address of the handler previously installed
0187  *
0188  *  Output Parameters: NONE
0189  *    *new_handler - address of the handler previously installed
0190  *
0191  *  NOTE:
0192  *
0193  *  On the SPARC v9, there are really only 512 vectors.  However, the executive
0194  *  has no easy, fast, reliable way to determine which traps are synchronous
0195  *  and which are asynchronous.  By default, traps return to the
0196  *  instruction which caused the interrupt.  So if you install a software
0197  *  trap handler as an executive interrupt handler (which is desirable since
0198  *  RTEMS takes care of window and register issues), then the executive needs
0199  *  to know that the return address is to the trap rather than the instruction
0200  *  following the trap.
0201  *
0202  *  So vectors 0 through 511 are treated as regular asynchronous traps which
0203  *  provide the "correct" return address.  Vectors 512 through 1023 are assumed
0204  *  by the executive to be synchronous and to require that the return be to the
0205  *  trapping instruction.
0206  *
0207  *  If you use this mechanism to install a trap handler which must reexecute
0208  *  the instruction which caused the trap, then it should be installed as
0209  *  a synchronous trap.  This will avoid the executive changing the return
0210  *  address.
0211  */
0212 void _CPU_ISR_install_raw_handler(
0213   uint32_t             vector,
0214   CPU_ISR_raw_handler  new_handler,
0215   CPU_ISR_raw_handler *old_handler
0216 )
0217 {
0218   uint32_t               real_vector;
0219   CPU_Trap_table_entry  *tba;
0220   CPU_Trap_table_entry  *slot;
0221   uint64_t               u64_tba;
0222   uint64_t               u64_handler;
0223 
0224   /*
0225    *  Get the "real" trap number for this vector ignoring the synchronous
0226    *  versus asynchronous indicator included with our vector numbers.
0227    */
0228 
0229   real_vector = SPARC_REAL_TRAP_NUMBER( vector );
0230 
0231   /*
0232    *  Get the current base address of the trap table and calculate a pointer
0233    *  to the slot we are interested in.
0234    */
0235 
0236   sparc64_get_tba( u64_tba );
0237 
0238 /*  u32_tbr &= 0xfffff000; */
0239   u64_tba &= 0xffffffffffff8000;  /* keep only trap base address */
0240 
0241   tba = (CPU_Trap_table_entry *) u64_tba;
0242 
0243   /* use array indexing to fill in lower bits -- require
0244    * CPU_Trap_table_entry to be full-sized. */
0245   slot = &tba[ real_vector ];
0246 
0247   /*
0248    *  Get the address of the old_handler from the trap table.
0249    *
0250    *  NOTE: The old_handler returned will be bogus if it does not follow
0251    *        the RTEMS model.
0252    */
0253 
0254   /* shift amount to shift of hi bits (31:10) */
0255 #define HI_BITS_SHIFT  10
0256 
0257   /* shift amount of hm bits (41:32) */
0258 #define HM_BITS_SHIFT  32
0259 
0260   /* shift amount of hh bits (63:42) */
0261 #define HH_BITS_SHIFT  42
0262 
0263   /* We're only interested in bits 0-9 of the immediate field*/
0264 #define IMM_MASK    0x000003FF
0265 
0266   if ( slot->rdpr_tstate_g4 == _CPU_Trap_slot_template.rdpr_tstate_g4 ) {
0267     u64_handler =
0268       (((uint64_t)((slot->sethi_of_hh_handler_to_g2 << HI_BITS_SHIFT) |
0269       (slot->or_g2_hm_handler_to_g2 & IMM_MASK))) << HM_BITS_SHIFT) |
0270       ((slot->sethi_of_handler_to_g3 << HI_BITS_SHIFT) |
0271       (slot->jmp_to_low_of_handler_plus_g3 & IMM_MASK));
0272     *old_handler = (CPU_ISR_raw_handler) u64_handler;
0273   } else
0274     *old_handler = 0;
0275 
0276   /*
0277    *  Copy the template to the slot and then fix it.
0278    */
0279 
0280   *slot = _CPU_Trap_slot_template;
0281 
0282   u64_handler = (uint64_t) new_handler;
0283 
0284   /* mask for extracting %hh */
0285 #define HH_BITS_MASK   0xFFFFFC0000000000
0286 
0287   /* mask for extracting %hm */
0288 #define HM_BITS_MASK   0x000003FF00000000
0289 
0290   /* mask for extracting %hi */
0291 #define HI_BITS_MASK   0x00000000FFFFFC00
0292 
0293   /* mask for extracting %lo */
0294 #define LO_BITS_MASK   0x00000000000003FF
0295 
0296 
0297   slot->mov_vector_g2 |= vector;
0298   slot->sethi_of_hh_handler_to_g2 |=
0299     (u64_handler & HH_BITS_MASK) >> HH_BITS_SHIFT;
0300   slot->or_g2_hm_handler_to_g2 |=
0301     (u64_handler & HM_BITS_MASK) >> HM_BITS_SHIFT;
0302   slot->sethi_of_handler_to_g3 |=
0303     (u64_handler & HI_BITS_MASK) >> HI_BITS_SHIFT;
0304   slot->jmp_to_low_of_handler_plus_g3 |= (u64_handler & LO_BITS_MASK);
0305 
0306   /* need to flush icache after this !!! */
0307 
0308   /* need to flush icache in case old trap handler is in cache */
0309   rtems_cache_invalidate_entire_instruction();
0310 
0311 }
0312 
0313 /*
0314  *  _CPU_ISR_install_vector
0315  *
0316  *  This kernel routine installs the RTEMS handler for the
0317  *  specified vector.
0318  *
0319  *  Input parameters:
0320  *    vector       - interrupt vector number
0321  *    new_handler  - replacement ISR for this vector number
0322  *    old_handler  - pointer to former ISR for this vector number
0323  *
0324  *  Output parameters:
0325  *    *old_handler - former ISR for this vector number
0326  */
0327 void _CPU_ISR_install_vector(
0328   uint32_t         vector,
0329   CPU_ISR_handler  new_handler,
0330   CPU_ISR_handler *old_handler
0331 )
0332 {
0333    uint64_t            real_vector;
0334    CPU_ISR_raw_handler ignored;
0335 
0336   /*
0337    *  Get the "real" trap number for this vector ignoring the synchronous
0338    *  versus asynchronous indicator included with our vector numbers.
0339    */
0340    real_vector = SPARC_REAL_TRAP_NUMBER( vector );
0341    /*
0342     *  Return the previous ISR handler.
0343     */
0344 
0345    *old_handler = _ISR_Vector_table[ vector ];
0346 
0347    /*
0348     *  Install the wrapper so this ISR can be invoked properly.
0349     */
0350 
0351    _CPU_ISR_install_raw_handler( vector, _ISR_Handler, &ignored );
0352 
0353    /*
0354     *  We put the actual user ISR address in '_ISR_vector_table'.  This will
0355     *  be used by the _ISR_Handler so the user gets control.
0356     */
0357 
0358     _ISR_Vector_table[ real_vector ] = new_handler;
0359 }