Back to home page

LXR

 
 

    


File indexing completed on 2025-05-11 08:24:11

0001 /* trees.c -- output deflated data using Huffman coding
0002  * Copyright (C) 1995-2021 Jean-loup Gailly
0003  * detect_data_type() function provided freely by Cosmin Truta, 2006
0004  * For conditions of distribution and use, see copyright notice in zlib.h
0005  */
0006 
0007 /*
0008  *  ALGORITHM
0009  *
0010  *      The "deflation" process uses several Huffman trees. The more
0011  *      common source values are represented by shorter bit sequences.
0012  *
0013  *      Each code tree is stored in a compressed form which is itself
0014  * a Huffman encoding of the lengths of all the code strings (in
0015  * ascending order by source values).  The actual code strings are
0016  * reconstructed from the lengths in the inflate process, as described
0017  * in the deflate specification.
0018  *
0019  *  REFERENCES
0020  *
0021  *      Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
0022  *      Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
0023  *
0024  *      Storer, James A.
0025  *          Data Compression:  Methods and Theory, pp. 49-50.
0026  *          Computer Science Press, 1988.  ISBN 0-7167-8156-5.
0027  *
0028  *      Sedgewick, R.
0029  *          Algorithms, p290.
0030  *          Addison-Wesley, 1983. ISBN 0-201-06672-6.
0031  */
0032 
0033 /* @(#) $Id$ */
0034 
0035 /* #define GEN_TREES_H */
0036 
0037 #include "deflate.h"
0038 
0039 #ifdef ZLIB_DEBUG
0040 #  include <ctype.h>
0041 #endif
0042 
0043 /* ===========================================================================
0044  * Constants
0045  */
0046 
0047 #define MAX_BL_BITS 7
0048 /* Bit length codes must not exceed MAX_BL_BITS bits */
0049 
0050 #define END_BLOCK 256
0051 /* end of block literal code */
0052 
0053 #define REP_3_6      16
0054 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
0055 
0056 #define REPZ_3_10    17
0057 /* repeat a zero length 3-10 times  (3 bits of repeat count) */
0058 
0059 #define REPZ_11_138  18
0060 /* repeat a zero length 11-138 times  (7 bits of repeat count) */
0061 
0062 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
0063    = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
0064 
0065 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
0066    = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
0067 
0068 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
0069    = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
0070 
0071 local const uch bl_order[BL_CODES]
0072    = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
0073 /* The lengths of the bit length codes are sent in order of decreasing
0074  * probability, to avoid transmitting the lengths for unused bit length codes.
0075  */
0076 
0077 /* ===========================================================================
0078  * Local data. These are initialized only once.
0079  */
0080 
0081 #define DIST_CODE_LEN  512 /* see definition of array dist_code below */
0082 
0083 #if defined(GEN_TREES_H) || !defined(STDC)
0084 /* non ANSI compilers may not accept trees.h */
0085 
0086 local ct_data static_ltree[L_CODES+2];
0087 /* The static literal tree. Since the bit lengths are imposed, there is no
0088  * need for the L_CODES extra codes used during heap construction. However
0089  * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
0090  * below).
0091  */
0092 
0093 local ct_data static_dtree[D_CODES];
0094 /* The static distance tree. (Actually a trivial tree since all codes use
0095  * 5 bits.)
0096  */
0097 
0098 uch _dist_code[DIST_CODE_LEN];
0099 /* Distance codes. The first 256 values correspond to the distances
0100  * 3 .. 258, the last 256 values correspond to the top 8 bits of
0101  * the 15 bit distances.
0102  */
0103 
0104 uch _length_code[MAX_MATCH-MIN_MATCH+1];
0105 /* length code for each normalized match length (0 == MIN_MATCH) */
0106 
0107 local int base_length[LENGTH_CODES];
0108 /* First normalized length for each code (0 = MIN_MATCH) */
0109 
0110 local int base_dist[D_CODES];
0111 /* First normalized distance for each code (0 = distance of 1) */
0112 
0113 #else
0114 #  include "trees.h"
0115 #endif /* GEN_TREES_H */
0116 
0117 struct static_tree_desc_s {
0118     const ct_data *static_tree;  /* static tree or NULL */
0119     const intf *extra_bits;      /* extra bits for each code or NULL */
0120     int     extra_base;          /* base index for extra_bits */
0121     int     elems;               /* max number of elements in the tree */
0122     int     max_length;          /* max bit length for the codes */
0123 };
0124 
0125 local const static_tree_desc  static_l_desc =
0126 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
0127 
0128 local const static_tree_desc  static_d_desc =
0129 {static_dtree, extra_dbits, 0,          D_CODES, MAX_BITS};
0130 
0131 local const static_tree_desc  static_bl_desc =
0132 {(const ct_data *)0, extra_blbits, 0,   BL_CODES, MAX_BL_BITS};
0133 
0134 /* ===========================================================================
0135  * Local (static) routines in this file.
0136  */
0137 
0138 local void tr_static_init OF((void));
0139 local void init_block     OF((deflate_state *s));
0140 local void pqdownheap     OF((deflate_state *s, ct_data *tree, int k));
0141 local void gen_bitlen     OF((deflate_state *s, tree_desc *desc));
0142 local void gen_codes      OF((ct_data *tree, int max_code, ushf *bl_count));
0143 local void build_tree     OF((deflate_state *s, tree_desc *desc));
0144 local void scan_tree      OF((deflate_state *s, ct_data *tree, int max_code));
0145 local void send_tree      OF((deflate_state *s, ct_data *tree, int max_code));
0146 local int  build_bl_tree  OF((deflate_state *s));
0147 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
0148                               int blcodes));
0149 local void compress_block OF((deflate_state *s, const ct_data *ltree,
0150                               const ct_data *dtree));
0151 local int  detect_data_type OF((deflate_state *s));
0152 local unsigned bi_reverse OF((unsigned code, int len));
0153 local void bi_windup      OF((deflate_state *s));
0154 local void bi_flush       OF((deflate_state *s));
0155 
0156 #ifdef GEN_TREES_H
0157 local void gen_trees_header OF((void));
0158 #endif
0159 
0160 #ifndef ZLIB_DEBUG
0161 #  define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
0162    /* Send a code of the given tree. c and tree must not have side effects */
0163 
0164 #else /* !ZLIB_DEBUG */
0165 #  define send_code(s, c, tree) \
0166      { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
0167        send_bits(s, tree[c].Code, tree[c].Len); }
0168 #endif
0169 
0170 /* ===========================================================================
0171  * Output a short LSB first on the stream.
0172  * IN assertion: there is enough room in pendingBuf.
0173  */
0174 #define put_short(s, w) { \
0175     put_byte(s, (uch)((w) & 0xff)); \
0176     put_byte(s, (uch)((ush)(w) >> 8)); \
0177 }
0178 
0179 /* ===========================================================================
0180  * Send a value on a given number of bits.
0181  * IN assertion: length <= 16 and value fits in length bits.
0182  */
0183 #ifdef ZLIB_DEBUG
0184 local void send_bits      OF((deflate_state *s, int value, int length));
0185 
0186 local void send_bits(s, value, length)
0187     deflate_state *s;
0188     int value;  /* value to send */
0189     int length; /* number of bits */
0190 {
0191     Tracevv((stderr," l %2d v %4x ", length, value));
0192     Assert(length > 0 && length <= 15, "invalid length");
0193     s->bits_sent += (ulg)length;
0194 
0195     /* If not enough room in bi_buf, use (valid) bits from bi_buf and
0196      * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid))
0197      * unused bits in value.
0198      */
0199     if (s->bi_valid > (int)Buf_size - length) {
0200         s->bi_buf |= (ush)value << s->bi_valid;
0201         put_short(s, s->bi_buf);
0202         s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
0203         s->bi_valid += length - Buf_size;
0204     } else {
0205         s->bi_buf |= (ush)value << s->bi_valid;
0206         s->bi_valid += length;
0207     }
0208 }
0209 #else /* !ZLIB_DEBUG */
0210 
0211 #define send_bits(s, value, length) \
0212 { int len = length;\
0213   if (s->bi_valid > (int)Buf_size - len) {\
0214     int val = (int)value;\
0215     s->bi_buf |= (ush)val << s->bi_valid;\
0216     put_short(s, s->bi_buf);\
0217     s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
0218     s->bi_valid += len - Buf_size;\
0219   } else {\
0220     s->bi_buf |= (ush)(value) << s->bi_valid;\
0221     s->bi_valid += len;\
0222   }\
0223 }
0224 #endif /* ZLIB_DEBUG */
0225 
0226 
0227 /* the arguments must not have side effects */
0228 
0229 /* ===========================================================================
0230  * Initialize the various 'constant' tables.
0231  */
0232 local void tr_static_init()
0233 {
0234 #if defined(GEN_TREES_H) || !defined(STDC)
0235     static int static_init_done = 0;
0236     int n;        /* iterates over tree elements */
0237     int bits;     /* bit counter */
0238     int length;   /* length value */
0239     int code;     /* code value */
0240     int dist;     /* distance index */
0241     ush bl_count[MAX_BITS+1];
0242     /* number of codes at each bit length for an optimal tree */
0243 
0244     if (static_init_done) return;
0245 
0246     /* For some embedded targets, global variables are not initialized: */
0247 #ifdef NO_INIT_GLOBAL_POINTERS
0248     static_l_desc.static_tree = static_ltree;
0249     static_l_desc.extra_bits = extra_lbits;
0250     static_d_desc.static_tree = static_dtree;
0251     static_d_desc.extra_bits = extra_dbits;
0252     static_bl_desc.extra_bits = extra_blbits;
0253 #endif
0254 
0255     /* Initialize the mapping length (0..255) -> length code (0..28) */
0256     length = 0;
0257     for (code = 0; code < LENGTH_CODES-1; code++) {
0258         base_length[code] = length;
0259         for (n = 0; n < (1 << extra_lbits[code]); n++) {
0260             _length_code[length++] = (uch)code;
0261         }
0262     }
0263     Assert (length == 256, "tr_static_init: length != 256");
0264     /* Note that the length 255 (match length 258) can be represented
0265      * in two different ways: code 284 + 5 bits or code 285, so we
0266      * overwrite length_code[255] to use the best encoding:
0267      */
0268     _length_code[length - 1] = (uch)code;
0269 
0270     /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
0271     dist = 0;
0272     for (code = 0 ; code < 16; code++) {
0273         base_dist[code] = dist;
0274         for (n = 0; n < (1 << extra_dbits[code]); n++) {
0275             _dist_code[dist++] = (uch)code;
0276         }
0277     }
0278     Assert (dist == 256, "tr_static_init: dist != 256");
0279     dist >>= 7; /* from now on, all distances are divided by 128 */
0280     for ( ; code < D_CODES; code++) {
0281         base_dist[code] = dist << 7;
0282         for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) {
0283             _dist_code[256 + dist++] = (uch)code;
0284         }
0285     }
0286     Assert (dist == 256, "tr_static_init: 256 + dist != 512");
0287 
0288     /* Construct the codes of the static literal tree */
0289     for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
0290     n = 0;
0291     while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
0292     while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
0293     while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
0294     while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
0295     /* Codes 286 and 287 do not exist, but we must include them in the
0296      * tree construction to get a canonical Huffman tree (longest code
0297      * all ones)
0298      */
0299     gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
0300 
0301     /* The static distance tree is trivial: */
0302     for (n = 0; n < D_CODES; n++) {
0303         static_dtree[n].Len = 5;
0304         static_dtree[n].Code = bi_reverse((unsigned)n, 5);
0305     }
0306     static_init_done = 1;
0307 
0308 #  ifdef GEN_TREES_H
0309     gen_trees_header();
0310 #  endif
0311 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
0312 }
0313 
0314 /* ===========================================================================
0315  * Generate the file trees.h describing the static trees.
0316  */
0317 #ifdef GEN_TREES_H
0318 #  ifndef ZLIB_DEBUG
0319 #    include <stdio.h>
0320 #  endif
0321 
0322 #  define SEPARATOR(i, last, width) \
0323       ((i) == (last)? "\n};\n\n" :    \
0324        ((i) % (width) == (width) - 1 ? ",\n" : ", "))
0325 
0326 void gen_trees_header()
0327 {
0328     FILE *header = fopen("trees.h", "w");
0329     int i;
0330 
0331     Assert (header != NULL, "Can't open trees.h");
0332     fprintf(header,
0333             "/* header created automatically with -DGEN_TREES_H */\n\n");
0334 
0335     fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
0336     for (i = 0; i < L_CODES+2; i++) {
0337         fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
0338                 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
0339     }
0340 
0341     fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
0342     for (i = 0; i < D_CODES; i++) {
0343         fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
0344                 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
0345     }
0346 
0347     fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n");
0348     for (i = 0; i < DIST_CODE_LEN; i++) {
0349         fprintf(header, "%2u%s", _dist_code[i],
0350                 SEPARATOR(i, DIST_CODE_LEN-1, 20));
0351     }
0352 
0353     fprintf(header,
0354         "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
0355     for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
0356         fprintf(header, "%2u%s", _length_code[i],
0357                 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
0358     }
0359 
0360     fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
0361     for (i = 0; i < LENGTH_CODES; i++) {
0362         fprintf(header, "%1u%s", base_length[i],
0363                 SEPARATOR(i, LENGTH_CODES-1, 20));
0364     }
0365 
0366     fprintf(header, "local const int base_dist[D_CODES] = {\n");
0367     for (i = 0; i < D_CODES; i++) {
0368         fprintf(header, "%5u%s", base_dist[i],
0369                 SEPARATOR(i, D_CODES-1, 10));
0370     }
0371 
0372     fclose(header);
0373 }
0374 #endif /* GEN_TREES_H */
0375 
0376 /* ===========================================================================
0377  * Initialize the tree data structures for a new zlib stream.
0378  */
0379 void ZLIB_INTERNAL _tr_init(s)
0380     deflate_state *s;
0381 {
0382     tr_static_init();
0383 
0384     s->l_desc.dyn_tree = s->dyn_ltree;
0385     s->l_desc.stat_desc = &static_l_desc;
0386 
0387     s->d_desc.dyn_tree = s->dyn_dtree;
0388     s->d_desc.stat_desc = &static_d_desc;
0389 
0390     s->bl_desc.dyn_tree = s->bl_tree;
0391     s->bl_desc.stat_desc = &static_bl_desc;
0392 
0393     s->bi_buf = 0;
0394     s->bi_valid = 0;
0395 #ifdef ZLIB_DEBUG
0396     s->compressed_len = 0L;
0397     s->bits_sent = 0L;
0398 #endif
0399 
0400     /* Initialize the first block of the first file: */
0401     init_block(s);
0402 }
0403 
0404 /* ===========================================================================
0405  * Initialize a new block.
0406  */
0407 local void init_block(s)
0408     deflate_state *s;
0409 {
0410     int n; /* iterates over tree elements */
0411 
0412     /* Initialize the trees. */
0413     for (n = 0; n < L_CODES;  n++) s->dyn_ltree[n].Freq = 0;
0414     for (n = 0; n < D_CODES;  n++) s->dyn_dtree[n].Freq = 0;
0415     for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
0416 
0417     s->dyn_ltree[END_BLOCK].Freq = 1;
0418     s->opt_len = s->static_len = 0L;
0419     s->sym_next = s->matches = 0;
0420 }
0421 
0422 #define SMALLEST 1
0423 /* Index within the heap array of least frequent node in the Huffman tree */
0424 
0425 
0426 /* ===========================================================================
0427  * Remove the smallest element from the heap and recreate the heap with
0428  * one less element. Updates heap and heap_len.
0429  */
0430 #define pqremove(s, tree, top) \
0431 {\
0432     top = s->heap[SMALLEST]; \
0433     s->heap[SMALLEST] = s->heap[s->heap_len--]; \
0434     pqdownheap(s, tree, SMALLEST); \
0435 }
0436 
0437 /* ===========================================================================
0438  * Compares to subtrees, using the tree depth as tie breaker when
0439  * the subtrees have equal frequency. This minimizes the worst case length.
0440  */
0441 #define smaller(tree, n, m, depth) \
0442    (tree[n].Freq < tree[m].Freq || \
0443    (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
0444 
0445 /* ===========================================================================
0446  * Restore the heap property by moving down the tree starting at node k,
0447  * exchanging a node with the smallest of its two sons if necessary, stopping
0448  * when the heap property is re-established (each father smaller than its
0449  * two sons).
0450  */
0451 local void pqdownheap(s, tree, k)
0452     deflate_state *s;
0453     ct_data *tree;  /* the tree to restore */
0454     int k;               /* node to move down */
0455 {
0456     int v = s->heap[k];
0457     int j = k << 1;  /* left son of k */
0458     while (j <= s->heap_len) {
0459         /* Set j to the smallest of the two sons: */
0460         if (j < s->heap_len &&
0461             smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) {
0462             j++;
0463         }
0464         /* Exit if v is smaller than both sons */
0465         if (smaller(tree, v, s->heap[j], s->depth)) break;
0466 
0467         /* Exchange v with the smallest son */
0468         s->heap[k] = s->heap[j];  k = j;
0469 
0470         /* And continue down the tree, setting j to the left son of k */
0471         j <<= 1;
0472     }
0473     s->heap[k] = v;
0474 }
0475 
0476 /* ===========================================================================
0477  * Compute the optimal bit lengths for a tree and update the total bit length
0478  * for the current block.
0479  * IN assertion: the fields freq and dad are set, heap[heap_max] and
0480  *    above are the tree nodes sorted by increasing frequency.
0481  * OUT assertions: the field len is set to the optimal bit length, the
0482  *     array bl_count contains the frequencies for each bit length.
0483  *     The length opt_len is updated; static_len is also updated if stree is
0484  *     not null.
0485  */
0486 local void gen_bitlen(s, desc)
0487     deflate_state *s;
0488     tree_desc *desc;    /* the tree descriptor */
0489 {
0490     ct_data *tree        = desc->dyn_tree;
0491     int max_code         = desc->max_code;
0492     const ct_data *stree = desc->stat_desc->static_tree;
0493     const intf *extra    = desc->stat_desc->extra_bits;
0494     int base             = desc->stat_desc->extra_base;
0495     int max_length       = desc->stat_desc->max_length;
0496     int h;              /* heap index */
0497     int n, m;           /* iterate over the tree elements */
0498     int bits;           /* bit length */
0499     int xbits;          /* extra bits */
0500     ush f;              /* frequency */
0501     int overflow = 0;   /* number of elements with bit length too large */
0502 
0503     for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
0504 
0505     /* In a first pass, compute the optimal bit lengths (which may
0506      * overflow in the case of the bit length tree).
0507      */
0508     tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
0509 
0510     for (h = s->heap_max + 1; h < HEAP_SIZE; h++) {
0511         n = s->heap[h];
0512         bits = tree[tree[n].Dad].Len + 1;
0513         if (bits > max_length) bits = max_length, overflow++;
0514         tree[n].Len = (ush)bits;
0515         /* We overwrite tree[n].Dad which is no longer needed */
0516 
0517         if (n > max_code) continue; /* not a leaf node */
0518 
0519         s->bl_count[bits]++;
0520         xbits = 0;
0521         if (n >= base) xbits = extra[n - base];
0522         f = tree[n].Freq;
0523         s->opt_len += (ulg)f * (unsigned)(bits + xbits);
0524         if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits);
0525     }
0526     if (overflow == 0) return;
0527 
0528     Tracev((stderr,"\nbit length overflow\n"));
0529     /* This happens for example on obj2 and pic of the Calgary corpus */
0530 
0531     /* Find the first bit length which could increase: */
0532     do {
0533         bits = max_length - 1;
0534         while (s->bl_count[bits] == 0) bits--;
0535         s->bl_count[bits]--;        /* move one leaf down the tree */
0536         s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */
0537         s->bl_count[max_length]--;
0538         /* The brother of the overflow item also moves one step up,
0539          * but this does not affect bl_count[max_length]
0540          */
0541         overflow -= 2;
0542     } while (overflow > 0);
0543 
0544     /* Now recompute all bit lengths, scanning in increasing frequency.
0545      * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
0546      * lengths instead of fixing only the wrong ones. This idea is taken
0547      * from 'ar' written by Haruhiko Okumura.)
0548      */
0549     for (bits = max_length; bits != 0; bits--) {
0550         n = s->bl_count[bits];
0551         while (n != 0) {
0552             m = s->heap[--h];
0553             if (m > max_code) continue;
0554             if ((unsigned) tree[m].Len != (unsigned) bits) {
0555                 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
0556                 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq;
0557                 tree[m].Len = (ush)bits;
0558             }
0559             n--;
0560         }
0561     }
0562 }
0563 
0564 /* ===========================================================================
0565  * Generate the codes for a given tree and bit counts (which need not be
0566  * optimal).
0567  * IN assertion: the array bl_count contains the bit length statistics for
0568  * the given tree and the field len is set for all tree elements.
0569  * OUT assertion: the field code is set for all tree elements of non
0570  *     zero code length.
0571  */
0572 local void gen_codes(tree, max_code, bl_count)
0573     ct_data *tree;             /* the tree to decorate */
0574     int max_code;              /* largest code with non zero frequency */
0575     ushf *bl_count;            /* number of codes at each bit length */
0576 {
0577     ush next_code[MAX_BITS+1]; /* next code value for each bit length */
0578     unsigned code = 0;         /* running code value */
0579     int bits;                  /* bit index */
0580     int n;                     /* code index */
0581 
0582     /* The distribution counts are first used to generate the code values
0583      * without bit reversal.
0584      */
0585     for (bits = 1; bits <= MAX_BITS; bits++) {
0586         code = (code + bl_count[bits - 1]) << 1;
0587         next_code[bits] = (ush)code;
0588     }
0589     /* Check that the bit counts in bl_count are consistent. The last code
0590      * must be all ones.
0591      */
0592     Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1,
0593             "inconsistent bit counts");
0594     Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
0595 
0596     for (n = 0;  n <= max_code; n++) {
0597         int len = tree[n].Len;
0598         if (len == 0) continue;
0599         /* Now reverse the bits */
0600         tree[n].Code = (ush)bi_reverse(next_code[len]++, len);
0601 
0602         Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
0603             n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1));
0604     }
0605 }
0606 
0607 /* ===========================================================================
0608  * Construct one Huffman tree and assigns the code bit strings and lengths.
0609  * Update the total bit length for the current block.
0610  * IN assertion: the field freq is set for all tree elements.
0611  * OUT assertions: the fields len and code are set to the optimal bit length
0612  *     and corresponding code. The length opt_len is updated; static_len is
0613  *     also updated if stree is not null. The field max_code is set.
0614  */
0615 local void build_tree(s, desc)
0616     deflate_state *s;
0617     tree_desc *desc; /* the tree descriptor */
0618 {
0619     ct_data *tree         = desc->dyn_tree;
0620     const ct_data *stree  = desc->stat_desc->static_tree;
0621     int elems             = desc->stat_desc->elems;
0622     int n, m;          /* iterate over heap elements */
0623     int max_code = -1; /* largest code with non zero frequency */
0624     int node;          /* new node being created */
0625 
0626     /* Construct the initial heap, with least frequent element in
0627      * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1].
0628      * heap[0] is not used.
0629      */
0630     s->heap_len = 0, s->heap_max = HEAP_SIZE;
0631 
0632     for (n = 0; n < elems; n++) {
0633         if (tree[n].Freq != 0) {
0634             s->heap[++(s->heap_len)] = max_code = n;
0635             s->depth[n] = 0;
0636         } else {
0637             tree[n].Len = 0;
0638         }
0639     }
0640 
0641     /* The pkzip format requires that at least one distance code exists,
0642      * and that at least one bit should be sent even if there is only one
0643      * possible code. So to avoid special checks later on we force at least
0644      * two codes of non zero frequency.
0645      */
0646     while (s->heap_len < 2) {
0647         node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
0648         tree[node].Freq = 1;
0649         s->depth[node] = 0;
0650         s->opt_len--; if (stree) s->static_len -= stree[node].Len;
0651         /* node is 0 or 1 so it does not have extra bits */
0652     }
0653     desc->max_code = max_code;
0654 
0655     /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree,
0656      * establish sub-heaps of increasing lengths:
0657      */
0658     for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
0659 
0660     /* Construct the Huffman tree by repeatedly combining the least two
0661      * frequent nodes.
0662      */
0663     node = elems;              /* next internal node of the tree */
0664     do {
0665         pqremove(s, tree, n);  /* n = node of least frequency */
0666         m = s->heap[SMALLEST]; /* m = node of next least frequency */
0667 
0668         s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
0669         s->heap[--(s->heap_max)] = m;
0670 
0671         /* Create a new node father of n and m */
0672         tree[node].Freq = tree[n].Freq + tree[m].Freq;
0673         s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ?
0674                                 s->depth[n] : s->depth[m]) + 1);
0675         tree[n].Dad = tree[m].Dad = (ush)node;
0676 #ifdef DUMP_BL_TREE
0677         if (tree == s->bl_tree) {
0678             fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
0679                     node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
0680         }
0681 #endif
0682         /* and insert the new node in the heap */
0683         s->heap[SMALLEST] = node++;
0684         pqdownheap(s, tree, SMALLEST);
0685 
0686     } while (s->heap_len >= 2);
0687 
0688     s->heap[--(s->heap_max)] = s->heap[SMALLEST];
0689 
0690     /* At this point, the fields freq and dad are set. We can now
0691      * generate the bit lengths.
0692      */
0693     gen_bitlen(s, (tree_desc *)desc);
0694 
0695     /* The field len is now set, we can generate the bit codes */
0696     gen_codes ((ct_data *)tree, max_code, s->bl_count);
0697 }
0698 
0699 /* ===========================================================================
0700  * Scan a literal or distance tree to determine the frequencies of the codes
0701  * in the bit length tree.
0702  */
0703 local void scan_tree(s, tree, max_code)
0704     deflate_state *s;
0705     ct_data *tree;   /* the tree to be scanned */
0706     int max_code;    /* and its largest code of non zero frequency */
0707 {
0708     int n;                     /* iterates over all tree elements */
0709     int prevlen = -1;          /* last emitted length */
0710     int curlen;                /* length of current code */
0711     int nextlen = tree[0].Len; /* length of next code */
0712     int count = 0;             /* repeat count of the current code */
0713     int max_count = 7;         /* max repeat count */
0714     int min_count = 4;         /* min repeat count */
0715 
0716     if (nextlen == 0) max_count = 138, min_count = 3;
0717     tree[max_code + 1].Len = (ush)0xffff; /* guard */
0718 
0719     for (n = 0; n <= max_code; n++) {
0720         curlen = nextlen; nextlen = tree[n + 1].Len;
0721         if (++count < max_count && curlen == nextlen) {
0722             continue;
0723         } else if (count < min_count) {
0724             s->bl_tree[curlen].Freq += count;
0725         } else if (curlen != 0) {
0726             if (curlen != prevlen) s->bl_tree[curlen].Freq++;
0727             s->bl_tree[REP_3_6].Freq++;
0728         } else if (count <= 10) {
0729             s->bl_tree[REPZ_3_10].Freq++;
0730         } else {
0731             s->bl_tree[REPZ_11_138].Freq++;
0732         }
0733         count = 0; prevlen = curlen;
0734         if (nextlen == 0) {
0735             max_count = 138, min_count = 3;
0736         } else if (curlen == nextlen) {
0737             max_count = 6, min_count = 3;
0738         } else {
0739             max_count = 7, min_count = 4;
0740         }
0741     }
0742 }
0743 
0744 /* ===========================================================================
0745  * Send a literal or distance tree in compressed form, using the codes in
0746  * bl_tree.
0747  */
0748 local void send_tree(s, tree, max_code)
0749     deflate_state *s;
0750     ct_data *tree; /* the tree to be scanned */
0751     int max_code;       /* and its largest code of non zero frequency */
0752 {
0753     int n;                     /* iterates over all tree elements */
0754     int prevlen = -1;          /* last emitted length */
0755     int curlen;                /* length of current code */
0756     int nextlen = tree[0].Len; /* length of next code */
0757     int count = 0;             /* repeat count of the current code */
0758     int max_count = 7;         /* max repeat count */
0759     int min_count = 4;         /* min repeat count */
0760 
0761     /* tree[max_code + 1].Len = -1; */  /* guard already set */
0762     if (nextlen == 0) max_count = 138, min_count = 3;
0763 
0764     for (n = 0; n <= max_code; n++) {
0765         curlen = nextlen; nextlen = tree[n + 1].Len;
0766         if (++count < max_count && curlen == nextlen) {
0767             continue;
0768         } else if (count < min_count) {
0769             do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
0770 
0771         } else if (curlen != 0) {
0772             if (curlen != prevlen) {
0773                 send_code(s, curlen, s->bl_tree); count--;
0774             }
0775             Assert(count >= 3 && count <= 6, " 3_6?");
0776             send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2);
0777 
0778         } else if (count <= 10) {
0779             send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3);
0780 
0781         } else {
0782             send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7);
0783         }
0784         count = 0; prevlen = curlen;
0785         if (nextlen == 0) {
0786             max_count = 138, min_count = 3;
0787         } else if (curlen == nextlen) {
0788             max_count = 6, min_count = 3;
0789         } else {
0790             max_count = 7, min_count = 4;
0791         }
0792     }
0793 }
0794 
0795 /* ===========================================================================
0796  * Construct the Huffman tree for the bit lengths and return the index in
0797  * bl_order of the last bit length code to send.
0798  */
0799 local int build_bl_tree(s)
0800     deflate_state *s;
0801 {
0802     int max_blindex;  /* index of last bit length code of non zero freq */
0803 
0804     /* Determine the bit length frequencies for literal and distance trees */
0805     scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
0806     scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
0807 
0808     /* Build the bit length tree: */
0809     build_tree(s, (tree_desc *)(&(s->bl_desc)));
0810     /* opt_len now includes the length of the tree representations, except the
0811      * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts.
0812      */
0813 
0814     /* Determine the number of bit length codes to send. The pkzip format
0815      * requires that at least 4 bit length codes be sent. (appnote.txt says
0816      * 3 but the actual value used is 4.)
0817      */
0818     for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
0819         if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
0820     }
0821     /* Update opt_len to include the bit length tree and counts */
0822     s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4;
0823     Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
0824             s->opt_len, s->static_len));
0825 
0826     return max_blindex;
0827 }
0828 
0829 /* ===========================================================================
0830  * Send the header for a block using dynamic Huffman trees: the counts, the
0831  * lengths of the bit length codes, the literal tree and the distance tree.
0832  * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
0833  */
0834 local void send_all_trees(s, lcodes, dcodes, blcodes)
0835     deflate_state *s;
0836     int lcodes, dcodes, blcodes; /* number of codes for each tree */
0837 {
0838     int rank;                    /* index in bl_order */
0839 
0840     Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
0841     Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
0842             "too many codes");
0843     Tracev((stderr, "\nbl counts: "));
0844     send_bits(s, lcodes - 257, 5);  /* not +255 as stated in appnote.txt */
0845     send_bits(s, dcodes - 1,   5);
0846     send_bits(s, blcodes - 4,  4);  /* not -3 as stated in appnote.txt */
0847     for (rank = 0; rank < blcodes; rank++) {
0848         Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
0849         send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
0850     }
0851     Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
0852 
0853     send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1);  /* literal tree */
0854     Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
0855 
0856     send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1);  /* distance tree */
0857     Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
0858 }
0859 
0860 /* ===========================================================================
0861  * Send a stored block
0862  */
0863 void ZLIB_INTERNAL _tr_stored_block(s, buf, stored_len, last)
0864     deflate_state *s;
0865     charf *buf;       /* input block */
0866     ulg stored_len;   /* length of input block */
0867     int last;         /* one if this is the last block for a file */
0868 {
0869     send_bits(s, (STORED_BLOCK<<1) + last, 3);  /* send block type */
0870     bi_windup(s);        /* align on byte boundary */
0871     put_short(s, (ush)stored_len);
0872     put_short(s, (ush)~stored_len);
0873     if (stored_len)
0874         zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len);
0875     s->pending += stored_len;
0876 #ifdef ZLIB_DEBUG
0877     s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
0878     s->compressed_len += (stored_len + 4) << 3;
0879     s->bits_sent += 2*16;
0880     s->bits_sent += stored_len << 3;
0881 #endif
0882 }
0883 
0884 /* ===========================================================================
0885  * Flush the bits in the bit buffer to pending output (leaves at most 7 bits)
0886  */
0887 void ZLIB_INTERNAL _tr_flush_bits(s)
0888     deflate_state *s;
0889 {
0890     bi_flush(s);
0891 }
0892 
0893 /* ===========================================================================
0894  * Send one empty static block to give enough lookahead for inflate.
0895  * This takes 10 bits, of which 7 may remain in the bit buffer.
0896  */
0897 void ZLIB_INTERNAL _tr_align(s)
0898     deflate_state *s;
0899 {
0900     send_bits(s, STATIC_TREES<<1, 3);
0901     send_code(s, END_BLOCK, static_ltree);
0902 #ifdef ZLIB_DEBUG
0903     s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
0904 #endif
0905     bi_flush(s);
0906 }
0907 
0908 /* ===========================================================================
0909  * Determine the best encoding for the current block: dynamic trees, static
0910  * trees or store, and write out the encoded block.
0911  */
0912 void ZLIB_INTERNAL _tr_flush_block(s, buf, stored_len, last)
0913     deflate_state *s;
0914     charf *buf;       /* input block, or NULL if too old */
0915     ulg stored_len;   /* length of input block */
0916     int last;         /* one if this is the last block for a file */
0917 {
0918     ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
0919     int max_blindex = 0;  /* index of last bit length code of non zero freq */
0920 
0921     /* Build the Huffman trees unless a stored block is forced */
0922     if (s->level > 0) {
0923 
0924         /* Check if the file is binary or text */
0925         if (s->strm->data_type == Z_UNKNOWN)
0926             s->strm->data_type = detect_data_type(s);
0927 
0928         /* Construct the literal and distance trees */
0929         build_tree(s, (tree_desc *)(&(s->l_desc)));
0930         Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
0931                 s->static_len));
0932 
0933         build_tree(s, (tree_desc *)(&(s->d_desc)));
0934         Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
0935                 s->static_len));
0936         /* At this point, opt_len and static_len are the total bit lengths of
0937          * the compressed block data, excluding the tree representations.
0938          */
0939 
0940         /* Build the bit length tree for the above two trees, and get the index
0941          * in bl_order of the last bit length code to send.
0942          */
0943         max_blindex = build_bl_tree(s);
0944 
0945         /* Determine the best encoding. Compute the block lengths in bytes. */
0946         opt_lenb = (s->opt_len + 3 + 7) >> 3;
0947         static_lenb = (s->static_len + 3 + 7) >> 3;
0948 
0949         Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
0950                 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
0951                 s->sym_next / 3));
0952 
0953 #ifndef FORCE_STATIC
0954         if (static_lenb <= opt_lenb || s->strategy == Z_FIXED)
0955 #endif
0956             opt_lenb = static_lenb;
0957 
0958     } else {
0959         Assert(buf != (char*)0, "lost buf");
0960         opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
0961     }
0962 
0963 #ifdef FORCE_STORED
0964     if (buf != (char*)0) { /* force stored block */
0965 #else
0966     if (stored_len + 4 <= opt_lenb && buf != (char*)0) {
0967                        /* 4: two words for the lengths */
0968 #endif
0969         /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
0970          * Otherwise we can't have processed more than WSIZE input bytes since
0971          * the last block flush, because compression would have been
0972          * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
0973          * transform a block into a stored block.
0974          */
0975         _tr_stored_block(s, buf, stored_len, last);
0976 
0977     } else if (static_lenb == opt_lenb) {
0978         send_bits(s, (STATIC_TREES<<1) + last, 3);
0979         compress_block(s, (const ct_data *)static_ltree,
0980                        (const ct_data *)static_dtree);
0981 #ifdef ZLIB_DEBUG
0982         s->compressed_len += 3 + s->static_len;
0983 #endif
0984     } else {
0985         send_bits(s, (DYN_TREES<<1) + last, 3);
0986         send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1,
0987                        max_blindex + 1);
0988         compress_block(s, (const ct_data *)s->dyn_ltree,
0989                        (const ct_data *)s->dyn_dtree);
0990 #ifdef ZLIB_DEBUG
0991         s->compressed_len += 3 + s->opt_len;
0992 #endif
0993     }
0994     Assert (s->compressed_len == s->bits_sent, "bad compressed size");
0995     /* The above check is made mod 2^32, for files larger than 512 MB
0996      * and uLong implemented on 32 bits.
0997      */
0998     init_block(s);
0999 
1000     if (last) {
1001         bi_windup(s);
1002 #ifdef ZLIB_DEBUG
1003         s->compressed_len += 7;  /* align on byte boundary */
1004 #endif
1005     }
1006     Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3,
1007            s->compressed_len - 7*last));
1008 }
1009 
1010 /* ===========================================================================
1011  * Save the match info and tally the frequency counts. Return true if
1012  * the current block must be flushed.
1013  */
1014 int ZLIB_INTERNAL _tr_tally(s, dist, lc)
1015     deflate_state *s;
1016     unsigned dist;  /* distance of matched string */
1017     unsigned lc;    /* match length - MIN_MATCH or unmatched char (dist==0) */
1018 {
1019     s->sym_buf[s->sym_next++] = (uch)dist;
1020     s->sym_buf[s->sym_next++] = (uch)(dist >> 8);
1021     s->sym_buf[s->sym_next++] = (uch)lc;
1022     if (dist == 0) {
1023         /* lc is the unmatched char */
1024         s->dyn_ltree[lc].Freq++;
1025     } else {
1026         s->matches++;
1027         /* Here, lc is the match length - MIN_MATCH */
1028         dist--;             /* dist = match distance - 1 */
1029         Assert((ush)dist < (ush)MAX_DIST(s) &&
1030                (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1031                (ush)d_code(dist) < (ush)D_CODES,  "_tr_tally: bad match");
1032 
1033         s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++;
1034         s->dyn_dtree[d_code(dist)].Freq++;
1035     }
1036     return (s->sym_next == s->sym_end);
1037 }
1038 
1039 /* ===========================================================================
1040  * Send the block data compressed using the given Huffman trees
1041  */
1042 local void compress_block(s, ltree, dtree)
1043     deflate_state *s;
1044     const ct_data *ltree; /* literal tree */
1045     const ct_data *dtree; /* distance tree */
1046 {
1047     unsigned dist;      /* distance of matched string */
1048     int lc;             /* match length or unmatched char (if dist == 0) */
1049     unsigned sx = 0;    /* running index in sym_buf */
1050     unsigned code;      /* the code to send */
1051     int extra;          /* number of extra bits to send */
1052 
1053     if (s->sym_next != 0) do {
1054         dist = s->sym_buf[sx++] & 0xff;
1055         dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8;
1056         lc = s->sym_buf[sx++];
1057         if (dist == 0) {
1058             send_code(s, lc, ltree); /* send a literal byte */
1059             Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1060         } else {
1061             /* Here, lc is the match length - MIN_MATCH */
1062             code = _length_code[lc];
1063             send_code(s, code + LITERALS + 1, ltree);   /* send length code */
1064             extra = extra_lbits[code];
1065             if (extra != 0) {
1066                 lc -= base_length[code];
1067                 send_bits(s, lc, extra);       /* send the extra length bits */
1068             }
1069             dist--; /* dist is now the match distance - 1 */
1070             code = d_code(dist);
1071             Assert (code < D_CODES, "bad d_code");
1072 
1073             send_code(s, code, dtree);       /* send the distance code */
1074             extra = extra_dbits[code];
1075             if (extra != 0) {
1076                 dist -= (unsigned)base_dist[code];
1077                 send_bits(s, dist, extra);   /* send the extra distance bits */
1078             }
1079         } /* literal or match pair ? */
1080 
1081         /* Check that the overlay between pending_buf and sym_buf is ok: */
1082         Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow");
1083 
1084     } while (sx < s->sym_next);
1085 
1086     send_code(s, END_BLOCK, ltree);
1087 }
1088 
1089 /* ===========================================================================
1090  * Check if the data type is TEXT or BINARY, using the following algorithm:
1091  * - TEXT if the two conditions below are satisfied:
1092  *    a) There are no non-portable control characters belonging to the
1093  *       "block list" (0..6, 14..25, 28..31).
1094  *    b) There is at least one printable character belonging to the
1095  *       "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255).
1096  * - BINARY otherwise.
1097  * - The following partially-portable control characters form a
1098  *   "gray list" that is ignored in this detection algorithm:
1099  *   (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}).
1100  * IN assertion: the fields Freq of dyn_ltree are set.
1101  */
1102 local int detect_data_type(s)
1103     deflate_state *s;
1104 {
1105     /* block_mask is the bit mask of block-listed bytes
1106      * set bits 0..6, 14..25, and 28..31
1107      * 0xf3ffc07f = binary 11110011111111111100000001111111
1108      */
1109     unsigned long block_mask = 0xf3ffc07fUL;
1110     int n;
1111 
1112     /* Check for non-textual ("block-listed") bytes. */
1113     for (n = 0; n <= 31; n++, block_mask >>= 1)
1114         if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0))
1115             return Z_BINARY;
1116 
1117     /* Check for textual ("allow-listed") bytes. */
1118     if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0
1119             || s->dyn_ltree[13].Freq != 0)
1120         return Z_TEXT;
1121     for (n = 32; n < LITERALS; n++)
1122         if (s->dyn_ltree[n].Freq != 0)
1123             return Z_TEXT;
1124 
1125     /* There are no "block-listed" or "allow-listed" bytes:
1126      * this stream either is empty or has tolerated ("gray-listed") bytes only.
1127      */
1128     return Z_BINARY;
1129 }
1130 
1131 /* ===========================================================================
1132  * Reverse the first len bits of a code, using straightforward code (a faster
1133  * method would use a table)
1134  * IN assertion: 1 <= len <= 15
1135  */
1136 local unsigned bi_reverse(code, len)
1137     unsigned code; /* the value to invert */
1138     int len;       /* its bit length */
1139 {
1140     register unsigned res = 0;
1141     do {
1142         res |= code & 1;
1143         code >>= 1, res <<= 1;
1144     } while (--len > 0);
1145     return res >> 1;
1146 }
1147 
1148 /* ===========================================================================
1149  * Flush the bit buffer, keeping at most 7 bits in it.
1150  */
1151 local void bi_flush(s)
1152     deflate_state *s;
1153 {
1154     if (s->bi_valid == 16) {
1155         put_short(s, s->bi_buf);
1156         s->bi_buf = 0;
1157         s->bi_valid = 0;
1158     } else if (s->bi_valid >= 8) {
1159         put_byte(s, (Byte)s->bi_buf);
1160         s->bi_buf >>= 8;
1161         s->bi_valid -= 8;
1162     }
1163 }
1164 
1165 /* ===========================================================================
1166  * Flush the bit buffer and align the output on a byte boundary
1167  */
1168 local void bi_windup(s)
1169     deflate_state *s;
1170 {
1171     if (s->bi_valid > 8) {
1172         put_short(s, s->bi_buf);
1173     } else if (s->bi_valid > 0) {
1174         put_byte(s, (Byte)s->bi_buf);
1175     }
1176     s->bi_buf = 0;
1177     s->bi_valid = 0;
1178 #ifdef ZLIB_DEBUG
1179     s->bits_sent = (s->bits_sent + 7) & ~7;
1180 #endif
1181 }