Back to home page

LXR

 
 

    


File indexing completed on 2025-05-11 08:23:49

0001 #include "fpsp-namespace.h"
0002 //
0003 //
0004 //  ssin.sa 3.3 7/29/91
0005 //
0006 //  The entry point sSIN computes the sine of an input argument
0007 //  sCOS computes the cosine, and sSINCOS computes both. The
0008 //  corresponding entry points with a "d" computes the same
0009 //  corresponding function values for denormalized inputs.
0010 //
0011 //  Input: Double-extended number X in location pointed to
0012 //      by address register a0.
0013 //
0014 //  Output: The function value sin(X) or cos(X) returned in Fp0 if SIN or
0015 //      COS is requested. Otherwise, for SINCOS, sin(X) is returned
0016 //      in Fp0, and cos(X) is returned in Fp1.
0017 //
0018 //  Modifies: Fp0 for SIN or COS; both Fp0 and Fp1 for SINCOS.
0019 //
0020 //  Accuracy and Monotonicity: The returned result is within 1 ulp in
0021 //      64 significant bit, i.e. within 0.5001 ulp to 53 bits if the
0022 //      result is subsequently rounded to double precision. The
0023 //      result is provably monotonic in double precision.
0024 //
0025 //  Speed: The programs sSIN and sCOS take approximately 150 cycles for
0026 //      input argument X such that |X| < 15Pi, which is the the usual
0027 //      situation. The speed for sSINCOS is approximately 190 cycles.
0028 //
0029 //  Algorithm:
0030 //
0031 //  SIN and COS:
0032 //  1. If SIN is invoked, set AdjN := 0; otherwise, set AdjN := 1.
0033 //
0034 //  2. If |X| >= 15Pi or |X| < 2**(-40), go to 7.
0035 //
0036 //  3. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
0037 //      k = N mod 4, so in particular, k = 0,1,2,or 3. Overwrite
0038 //      k by k := k + AdjN.
0039 //
0040 //  4. If k is even, go to 6.
0041 //
0042 //  5. (k is odd) Set j := (k-1)/2, sgn := (-1)**j. Return sgn*cos(r)
0043 //      where cos(r) is approximated by an even polynomial in r,
0044 //      1 + r*r*(B1+s*(B2+ ... + s*B8)),    s = r*r.
0045 //      Exit.
0046 //
0047 //  6. (k is even) Set j := k/2, sgn := (-1)**j. Return sgn*sin(r)
0048 //      where sin(r) is approximated by an odd polynomial in r
0049 //      r + r*s*(A1+s*(A2+ ... + s*A7)),    s = r*r.
0050 //      Exit.
0051 //
0052 //  7. If |X| > 1, go to 9.
0053 //
0054 //  8. (|X|<2**(-40)) If SIN is invoked, return X; otherwise return 1.
0055 //
0056 //  9. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 3.
0057 //
0058 //  SINCOS:
0059 //  1. If |X| >= 15Pi or |X| < 2**(-40), go to 6.
0060 //
0061 //  2. Decompose X as X = N(Pi/2) + r where |r| <= Pi/4. Let
0062 //      k = N mod 4, so in particular, k = 0,1,2,or 3.
0063 //
0064 //  3. If k is even, go to 5.
0065 //
0066 //  4. (k is odd) Set j1 := (k-1)/2, j2 := j1 (EOR) (k mod 2), i.e.
0067 //      j1 exclusive or with the l.s.b. of k.
0068 //      sgn1 := (-1)**j1, sgn2 := (-1)**j2.
0069 //      SIN(X) = sgn1 * cos(r) and COS(X) = sgn2*sin(r) where
0070 //      sin(r) and cos(r) are computed as odd and even polynomials
0071 //      in r, respectively. Exit
0072 //
0073 //  5. (k is even) Set j1 := k/2, sgn1 := (-1)**j1.
0074 //      SIN(X) = sgn1 * sin(r) and COS(X) = sgn1*cos(r) where
0075 //      sin(r) and cos(r) are computed as odd and even polynomials
0076 //      in r, respectively. Exit
0077 //
0078 //  6. If |X| > 1, go to 8.
0079 //
0080 //  7. (|X|<2**(-40)) SIN(X) = X and COS(X) = 1. Exit.
0081 //
0082 //  8. Overwrite X by X := X rem 2Pi. Now that |X| <= Pi, go back to 2.
0083 //
0084 
0085 //      Copyright (C) Motorola, Inc. 1990
0086 //          All Rights Reserved
0087 //
0088 //  THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA
0089 //  The copyright notice above does not evidence any
0090 //  actual or intended publication of such source code.
0091 
0092 //SSIN  idnt    2,1 | Motorola 040 Floating Point Software Package
0093 
0094     |section    8
0095 
0096 #include "fpsp.defs"
0097 
0098 BOUNDS1:    .long 0x3FD78000,0x4004BC7E
0099 TWOBYPI:    .long 0x3FE45F30,0x6DC9C883
0100 
0101 SINA7:  .long 0xBD6AAA77,0xCCC994F5
0102 SINA6:  .long 0x3DE61209,0x7AAE8DA1
0103 
0104 SINA5:  .long 0xBE5AE645,0x2A118AE4
0105 SINA4:  .long 0x3EC71DE3,0xA5341531
0106 
0107 SINA3:  .long 0xBF2A01A0,0x1A018B59,0x00000000,0x00000000
0108 
0109 SINA2:  .long 0x3FF80000,0x88888888,0x888859AF,0x00000000
0110 
0111 SINA1:  .long 0xBFFC0000,0xAAAAAAAA,0xAAAAAA99,0x00000000
0112 
0113 COSB8:  .long 0x3D2AC4D0,0xD6011EE3
0114 COSB7:  .long 0xBDA9396F,0x9F45AC19
0115 
0116 COSB6:  .long 0x3E21EED9,0x0612C972
0117 COSB5:  .long 0xBE927E4F,0xB79D9FCF
0118 
0119 COSB4:  .long 0x3EFA01A0,0x1A01D423,0x00000000,0x00000000
0120 
0121 COSB3:  .long 0xBFF50000,0xB60B60B6,0x0B61D438,0x00000000
0122 
0123 COSB2:  .long 0x3FFA0000,0xAAAAAAAA,0xAAAAAB5E
0124 COSB1:  .long 0xBF000000
0125 
0126 INVTWOPI: .long 0x3FFC0000,0xA2F9836E,0x4E44152A
0127 
0128 TWOPI1: .long 0x40010000,0xC90FDAA2,0x00000000,0x00000000
0129 TWOPI2: .long 0x3FDF0000,0x85A308D4,0x00000000,0x00000000
0130 
0131     |xref   PITBL
0132 
0133     .set    INARG,FP_SCR4
0134 
0135     .set    X,FP_SCR5
0136     .set    XDCARE,X+2
0137     .set    XFRAC,X+4
0138 
0139     .set    RPRIME,FP_SCR1
0140     .set    SPRIME,FP_SCR2
0141 
0142     .set    POSNEG1,L_SCR1
0143     .set    TWOTO63,L_SCR1
0144 
0145     .set    ENDFLAG,L_SCR2
0146     .set    N,L_SCR2
0147 
0148     .set    ADJN,L_SCR3
0149 
0150     | xref  t_frcinx
0151     |xref   t_extdnrm
0152     |xref   sto_cos
0153 
0154     .global ssind
0155 ssind:
0156 //--SIN(X) = X FOR DENORMALIZED X
0157     bra     t_extdnrm
0158 
0159     .global scosd
0160 scosd:
0161 //--COS(X) = 1 FOR DENORMALIZED X
0162 
0163     fmoves      #0x3F800000,%fp0
0164 //
0165 //  9D25B Fix: Sometimes the previous fmove.s sets fpsr bits
0166 //
0167     fmovel      #0,%fpsr
0168 //
0169     bra     t_frcinx
0170 
0171     .global ssin
0172 ssin:
0173 //--SET ADJN TO 0
0174     movel       #0,ADJN(%a6)
0175     bras        SINBGN
0176 
0177     .global scos
0178 scos:
0179 //--SET ADJN TO 1
0180     movel       #1,ADJN(%a6)
0181 
0182 SINBGN:
0183 //--SAVE FPCR, FP1. CHECK IF |X| IS TOO SMALL OR LARGE
0184 
0185     fmovex      (%a0),%fp0  // ...LOAD INPUT
0186 
0187     movel       (%a0),%d0
0188     movew       4(%a0),%d0
0189     fmovex      %fp0,X(%a6)
0190     andil       #0x7FFFFFFF,%d0     // ...COMPACTIFY X
0191 
0192     cmpil       #0x3FD78000,%d0     // ...|X| >= 2**(-40)?
0193     bges        SOK1
0194     bra     SINSM
0195 
0196 SOK1:
0197     cmpil       #0x4004BC7E,%d0     // ...|X| < 15 PI?
0198     blts        SINMAIN
0199     bra     REDUCEX
0200 
0201 SINMAIN:
0202 //--THIS IS THE USUAL CASE, |X| <= 15 PI.
0203 //--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
0204     fmovex      %fp0,%fp1
0205     fmuld       TWOBYPI,%fp1    // ...X*2/PI
0206 
0207 //--HIDE THE NEXT THREE INSTRUCTIONS
0208     lea     PITBL+0x200,%a1 // ...TABLE OF N*PI/2, N = -32,...,32
0209 
0210 
0211 //--FP1 IS NOW READY
0212     fmovel      %fp1,N(%a6)     // ...CONVERT TO INTEGER
0213 
0214     movel       N(%a6),%d0
0215     asll        #4,%d0
0216     addal       %d0,%a1 // ...A1 IS THE ADDRESS OF N*PIBY2
0217 //              ...WHICH IS IN TWO PIECES Y1 & Y2
0218 
0219     fsubx       (%a1)+,%fp0 // ...X-Y1
0220 //--HIDE THE NEXT ONE
0221     fsubs       (%a1),%fp0  // ...FP0 IS R = (X-Y1)-Y2
0222 
0223 SINCONT:
0224 //--continuation from REDUCEX
0225 
0226 //--GET N+ADJN AND SEE IF SIN(R) OR COS(R) IS NEEDED
0227     movel       N(%a6),%d0
0228     addl        ADJN(%a6),%d0   // ...SEE IF D0 IS ODD OR EVEN
0229     rorl        #1,%d0  // ...D0 WAS ODD IFF D0 IS NEGATIVE
0230     cmpil       #0,%d0
0231     blt     COSPOLY
0232 
0233 SINPOLY:
0234 //--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
0235 //--THEN WE RETURN  SGN*SIN(R). SGN*SIN(R) IS COMPUTED BY
0236 //--R' + R'*S*(A1 + S(A2 + S(A3 + S(A4 + ... + SA7)))), WHERE
0237 //--R' = SGN*R, S=R*R. THIS CAN BE REWRITTEN AS
0238 //--R' + R'*S*( [A1+T(A3+T(A5+TA7))] + [S(A2+T(A4+TA6))])
0239 //--WHERE T=S*S.
0240 //--NOTE THAT A3 THROUGH A7 ARE STORED IN DOUBLE PRECISION
0241 //--WHILE A1 AND A2 ARE IN DOUBLE-EXTENDED FORMAT.
0242     fmovex      %fp0,X(%a6) // ...X IS R
0243     fmulx       %fp0,%fp0   // ...FP0 IS S
0244 //---HIDE THE NEXT TWO WHILE WAITING FOR FP0
0245     fmoved      SINA7,%fp3
0246     fmoved      SINA6,%fp2
0247 //--FP0 IS NOW READY
0248     fmovex      %fp0,%fp1
0249     fmulx       %fp1,%fp1   // ...FP1 IS T
0250 //--HIDE THE NEXT TWO WHILE WAITING FOR FP1
0251 
0252     rorl        #1,%d0
0253     andil       #0x80000000,%d0
0254 //              ...LEAST SIG. BIT OF D0 IN SIGN POSITION
0255     eorl        %d0,X(%a6)  // ...X IS NOW R'= SGN*R
0256 
0257     fmulx       %fp1,%fp3   // ...TA7
0258     fmulx       %fp1,%fp2   // ...TA6
0259 
0260     faddd       SINA5,%fp3 // ...A5+TA7
0261     faddd       SINA4,%fp2 // ...A4+TA6
0262 
0263     fmulx       %fp1,%fp3   // ...T(A5+TA7)
0264     fmulx       %fp1,%fp2   // ...T(A4+TA6)
0265 
0266     faddd       SINA3,%fp3 // ...A3+T(A5+TA7)
0267     faddx       SINA2,%fp2 // ...A2+T(A4+TA6)
0268 
0269     fmulx       %fp3,%fp1   // ...T(A3+T(A5+TA7))
0270 
0271     fmulx       %fp0,%fp2   // ...S(A2+T(A4+TA6))
0272     faddx       SINA1,%fp1 // ...A1+T(A3+T(A5+TA7))
0273     fmulx       X(%a6),%fp0 // ...R'*S
0274 
0275     faddx       %fp2,%fp1   // ...[A1+T(A3+T(A5+TA7))]+[S(A2+T(A4+TA6))]
0276 //--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
0277 //--FP2 RELEASED, RESTORE NOW AND TAKE FULL ADVANTAGE OF HIDING
0278 
0279 
0280     fmulx       %fp1,%fp0       // ...SIN(R')-R'
0281 //--FP1 RELEASED.
0282 
0283     fmovel      %d1,%FPCR       //restore users exceptions
0284     faddx       X(%a6),%fp0     //last inst - possible exception set
0285     bra     t_frcinx
0286 
0287 
0288 COSPOLY:
0289 //--LET J BE THE LEAST SIG. BIT OF D0, LET SGN := (-1)**J.
0290 //--THEN WE RETURN  SGN*COS(R). SGN*COS(R) IS COMPUTED BY
0291 //--SGN + S'*(B1 + S(B2 + S(B3 + S(B4 + ... + SB8)))), WHERE
0292 //--S=R*R AND S'=SGN*S. THIS CAN BE REWRITTEN AS
0293 //--SGN + S'*([B1+T(B3+T(B5+TB7))] + [S(B2+T(B4+T(B6+TB8)))])
0294 //--WHERE T=S*S.
0295 //--NOTE THAT B4 THROUGH B8 ARE STORED IN DOUBLE PRECISION
0296 //--WHILE B2 AND B3 ARE IN DOUBLE-EXTENDED FORMAT, B1 IS -1/2
0297 //--AND IS THEREFORE STORED AS SINGLE PRECISION.
0298 
0299     fmulx       %fp0,%fp0   // ...FP0 IS S
0300 //---HIDE THE NEXT TWO WHILE WAITING FOR FP0
0301     fmoved      COSB8,%fp2
0302     fmoved      COSB7,%fp3
0303 //--FP0 IS NOW READY
0304     fmovex      %fp0,%fp1
0305     fmulx       %fp1,%fp1   // ...FP1 IS T
0306 //--HIDE THE NEXT TWO WHILE WAITING FOR FP1
0307     fmovex      %fp0,X(%a6) // ...X IS S
0308     rorl        #1,%d0
0309     andil       #0x80000000,%d0
0310 //          ...LEAST SIG. BIT OF D0 IN SIGN POSITION
0311 
0312     fmulx       %fp1,%fp2   // ...TB8
0313 //--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
0314     eorl        %d0,X(%a6)  // ...X IS NOW S'= SGN*S
0315     andil       #0x80000000,%d0
0316 
0317     fmulx       %fp1,%fp3   // ...TB7
0318 //--HIDE THE NEXT TWO WHILE WAITING FOR THE XU
0319     oril        #0x3F800000,%d0 // ...D0 IS SGN IN SINGLE
0320     movel       %d0,POSNEG1(%a6)
0321 
0322     faddd       COSB6,%fp2 // ...B6+TB8
0323     faddd       COSB5,%fp3 // ...B5+TB7
0324 
0325     fmulx       %fp1,%fp2   // ...T(B6+TB8)
0326     fmulx       %fp1,%fp3   // ...T(B5+TB7)
0327 
0328     faddd       COSB4,%fp2 // ...B4+T(B6+TB8)
0329     faddx       COSB3,%fp3 // ...B3+T(B5+TB7)
0330 
0331     fmulx       %fp1,%fp2   // ...T(B4+T(B6+TB8))
0332     fmulx       %fp3,%fp1   // ...T(B3+T(B5+TB7))
0333 
0334     faddx       COSB2,%fp2 // ...B2+T(B4+T(B6+TB8))
0335     fadds       COSB1,%fp1 // ...B1+T(B3+T(B5+TB7))
0336 
0337     fmulx       %fp2,%fp0   // ...S(B2+T(B4+T(B6+TB8)))
0338 //--FP3 RELEASED, RESTORE NOW AND TAKE SOME ADVANTAGE OF HIDING
0339 //--FP2 RELEASED.
0340 
0341 
0342     faddx       %fp1,%fp0
0343 //--FP1 RELEASED
0344 
0345     fmulx       X(%a6),%fp0
0346 
0347     fmovel      %d1,%FPCR       //restore users exceptions
0348     fadds       POSNEG1(%a6),%fp0   //last inst - possible exception set
0349     bra     t_frcinx
0350 
0351 
0352 SINBORS:
0353 //--IF |X| > 15PI, WE USE THE GENERAL ARGUMENT REDUCTION.
0354 //--IF |X| < 2**(-40), RETURN X OR 1.
0355     cmpil       #0x3FFF8000,%d0
0356     bgts        REDUCEX
0357 
0358 
0359 SINSM:
0360     movel       ADJN(%a6),%d0
0361     cmpil       #0,%d0
0362     bgts        COSTINY
0363 
0364 SINTINY:
0365     movew       #0x0000,XDCARE(%a6) // ...JUST IN CASE
0366     fmovel      %d1,%FPCR       //restore users exceptions
0367     fmovex      X(%a6),%fp0     //last inst - possible exception set
0368     bra     t_frcinx
0369 
0370 
0371 COSTINY:
0372     fmoves      #0x3F800000,%fp0
0373 
0374     fmovel      %d1,%FPCR       //restore users exceptions
0375     fsubs       #0x00800000,%fp0    //last inst - possible exception set
0376     bra     t_frcinx
0377 
0378 
0379 REDUCEX:
0380 //--WHEN REDUCEX IS USED, THE CODE WILL INEVITABLY BE SLOW.
0381 //--THIS REDUCTION METHOD, HOWEVER, IS MUCH FASTER THAN USING
0382 //--THE REMAINDER INSTRUCTION WHICH IS NOW IN SOFTWARE.
0383 
0384     fmovemx %fp2-%fp5,-(%a7)    // ...save FP2 through FP5
0385     movel       %d2,-(%a7)
0386         fmoves         #0x00000000,%fp1
0387 //--If compact form of abs(arg) in d0=$7ffeffff, argument is so large that
0388 //--there is a danger of unwanted overflow in first LOOP iteration.  In this
0389 //--case, reduce argument by one remainder step to make subsequent reduction
0390 //--safe.
0391     cmpil   #0x7ffeffff,%d0     //is argument dangerously large?
0392     bnes    LOOP
0393     movel   #0x7ffe0000,FP_SCR2(%a6)    //yes
0394 //                  ;create 2**16383*PI/2
0395     movel   #0xc90fdaa2,FP_SCR2+4(%a6)
0396     clrl    FP_SCR2+8(%a6)
0397     ftstx   %fp0            //test sign of argument
0398     movel   #0x7fdc0000,FP_SCR3(%a6)    //create low half of 2**16383*
0399 //                  ;PI/2 at FP_SCR3
0400     movel   #0x85a308d3,FP_SCR3+4(%a6)
0401     clrl   FP_SCR3+8(%a6)
0402     fblt    red_neg
0403     orw #0x8000,FP_SCR2(%a6)    //positive arg
0404     orw #0x8000,FP_SCR3(%a6)
0405 red_neg:
0406     faddx  FP_SCR2(%a6),%fp0        //high part of reduction is exact
0407     fmovex  %fp0,%fp1       //save high result in fp1
0408     faddx  FP_SCR3(%a6),%fp0        //low part of reduction
0409     fsubx  %fp0,%fp1            //determine low component of result
0410     faddx  FP_SCR3(%a6),%fp1        //fp0/fp1 are reduced argument.
0411 
0412 //--ON ENTRY, FP0 IS X, ON RETURN, FP0 IS X REM PI/2, |X| <= PI/4.
0413 //--integer quotient will be stored in N
0414 //--Intermediate remainder is 66-bit long; (R,r) in (FP0,FP1)
0415 
0416 LOOP:
0417     fmovex      %fp0,INARG(%a6) // ...+-2**K * F, 1 <= F < 2
0418     movew       INARG(%a6),%d0
0419         movel          %d0,%a1      // ...save a copy of D0
0420     andil       #0x00007FFF,%d0
0421     subil       #0x00003FFF,%d0 // ...D0 IS K
0422     cmpil       #28,%d0
0423     bles        LASTLOOP
0424 CONTLOOP:
0425     subil       #27,%d0  // ...D0 IS L := K-27
0426     movel       #0,ENDFLAG(%a6)
0427     bras        WORK
0428 LASTLOOP:
0429     clrl        %d0     // ...D0 IS L := 0
0430     movel       #1,ENDFLAG(%a6)
0431 
0432 WORK:
0433 //--FIND THE REMAINDER OF (R,r) W.R.T.  2**L * (PI/2). L IS SO CHOSEN
0434 //--THAT    INT( X * (2/PI) / 2**(L) ) < 2**29.
0435 
0436 //--CREATE 2**(-L) * (2/PI), SIGN(INARG)*2**(63),
0437 //--2**L * (PIby2_1), 2**L * (PIby2_2)
0438 
0439     movel       #0x00003FFE,%d2 // ...BIASED EXPO OF 2/PI
0440     subl        %d0,%d2     // ...BIASED EXPO OF 2**(-L)*(2/PI)
0441 
0442     movel       #0xA2F9836E,FP_SCR1+4(%a6)
0443     movel       #0x4E44152A,FP_SCR1+8(%a6)
0444     movew       %d2,FP_SCR1(%a6)    // ...FP_SCR1 is 2**(-L)*(2/PI)
0445 
0446     fmovex      %fp0,%fp2
0447     fmulx       FP_SCR1(%a6),%fp2
0448 //--WE MUST NOW FIND INT(FP2). SINCE WE NEED THIS VALUE IN
0449 //--FLOATING POINT FORMAT, THE TWO FMOVE'S  FMOVE.L FP <--> N
0450 //--WILL BE TOO INEFFICIENT. THE WAY AROUND IT IS THAT
0451 //--(SIGN(INARG)*2**63  +   FP2) - SIGN(INARG)*2**63 WILL GIVE
0452 //--US THE DESIRED VALUE IN FLOATING POINT.
0453 
0454 //--HIDE SIX CYCLES OF INSTRUCTION
0455         movel       %a1,%d2
0456         swap        %d2
0457     andil       #0x80000000,%d2
0458     oril        #0x5F000000,%d2 // ...D2 IS SIGN(INARG)*2**63 IN SGL
0459     movel       %d2,TWOTO63(%a6)
0460 
0461     movel       %d0,%d2
0462     addil       #0x00003FFF,%d2 // ...BIASED EXPO OF 2**L * (PI/2)
0463 
0464 //--FP2 IS READY
0465     fadds       TWOTO63(%a6),%fp2   // ...THE FRACTIONAL PART OF FP1 IS ROUNDED
0466 
0467 //--HIDE 4 CYCLES OF INSTRUCTION; creating 2**(L)*Piby2_1  and  2**(L)*Piby2_2
0468         movew       %d2,FP_SCR2(%a6)
0469     clrw           FP_SCR2+2(%a6)
0470     movel       #0xC90FDAA2,FP_SCR2+4(%a6)
0471     clrl        FP_SCR2+8(%a6)      // ...FP_SCR2 is  2**(L) * Piby2_1
0472 
0473 //--FP2 IS READY
0474     fsubs       TWOTO63(%a6),%fp2       // ...FP2 is N
0475 
0476     addil       #0x00003FDD,%d0
0477         movew       %d0,FP_SCR3(%a6)
0478     clrw           FP_SCR3+2(%a6)
0479     movel       #0x85A308D3,FP_SCR3+4(%a6)
0480     clrl        FP_SCR3+8(%a6)      // ...FP_SCR3 is 2**(L) * Piby2_2
0481 
0482     movel       ENDFLAG(%a6),%d0
0483 
0484 //--We are now ready to perform (R+r) - N*P1 - N*P2, P1 = 2**(L) * Piby2_1 and
0485 //--P2 = 2**(L) * Piby2_2
0486     fmovex      %fp2,%fp4
0487     fmulx       FP_SCR2(%a6),%fp4       // ...W = N*P1
0488     fmovex      %fp2,%fp5
0489     fmulx       FP_SCR3(%a6),%fp5       // ...w = N*P2
0490     fmovex      %fp4,%fp3
0491 //--we want P+p = W+w  but  |p| <= half ulp of P
0492 //--Then, we need to compute  A := R-P   and  a := r-p
0493     faddx       %fp5,%fp3           // ...FP3 is P
0494     fsubx       %fp3,%fp4           // ...W-P
0495 
0496     fsubx       %fp3,%fp0           // ...FP0 is A := R - P
0497         faddx       %fp5,%fp4           // ...FP4 is p = (W-P)+w
0498 
0499     fmovex      %fp0,%fp3           // ...FP3 A
0500     fsubx       %fp4,%fp1           // ...FP1 is a := r - p
0501 
0502 //--Now we need to normalize (A,a) to  "new (R,r)" where R+r = A+a but
0503 //--|r| <= half ulp of R.
0504     faddx       %fp1,%fp0           // ...FP0 is R := A+a
0505 //--No need to calculate r if this is the last loop
0506     cmpil       #0,%d0
0507     bgt     RESTORE
0508 
0509 //--Need to calculate r
0510     fsubx       %fp0,%fp3           // ...A-R
0511     faddx       %fp3,%fp1           // ...FP1 is r := (A-R)+a
0512     bra     LOOP
0513 
0514 RESTORE:
0515         fmovel      %fp2,N(%a6)
0516     movel       (%a7)+,%d2
0517     fmovemx (%a7)+,%fp2-%fp5
0518 
0519 
0520     movel       ADJN(%a6),%d0
0521     cmpil       #4,%d0
0522 
0523     blt     SINCONT
0524     bras        SCCONT
0525 
0526     .global ssincosd
0527 ssincosd:
0528 //--SIN AND COS OF X FOR DENORMALIZED X
0529 
0530     fmoves      #0x3F800000,%fp1
0531     bsr     sto_cos     //store cosine result
0532     bra     t_extdnrm
0533 
0534     .global ssincos
0535 ssincos:
0536 //--SET ADJN TO 4
0537     movel       #4,ADJN(%a6)
0538 
0539     fmovex      (%a0),%fp0  // ...LOAD INPUT
0540 
0541     movel       (%a0),%d0
0542     movew       4(%a0),%d0
0543     fmovex      %fp0,X(%a6)
0544     andil       #0x7FFFFFFF,%d0     // ...COMPACTIFY X
0545 
0546     cmpil       #0x3FD78000,%d0     // ...|X| >= 2**(-40)?
0547     bges        SCOK1
0548     bra     SCSM
0549 
0550 SCOK1:
0551     cmpil       #0x4004BC7E,%d0     // ...|X| < 15 PI?
0552     blts        SCMAIN
0553     bra     REDUCEX
0554 
0555 
0556 SCMAIN:
0557 //--THIS IS THE USUAL CASE, |X| <= 15 PI.
0558 //--THE ARGUMENT REDUCTION IS DONE BY TABLE LOOK UP.
0559     fmovex      %fp0,%fp1
0560     fmuld       TWOBYPI,%fp1    // ...X*2/PI
0561 
0562 //--HIDE THE NEXT THREE INSTRUCTIONS
0563     lea     PITBL+0x200,%a1 // ...TABLE OF N*PI/2, N = -32,...,32
0564 
0565 
0566 //--FP1 IS NOW READY
0567     fmovel      %fp1,N(%a6)     // ...CONVERT TO INTEGER
0568 
0569     movel       N(%a6),%d0
0570     asll        #4,%d0
0571     addal       %d0,%a1     // ...ADDRESS OF N*PIBY2, IN Y1, Y2
0572 
0573     fsubx       (%a1)+,%fp0 // ...X-Y1
0574         fsubs       (%a1),%fp0  // ...FP0 IS R = (X-Y1)-Y2
0575 
0576 SCCONT:
0577 //--continuation point from REDUCEX
0578 
0579 //--HIDE THE NEXT TWO
0580     movel       N(%a6),%d0
0581     rorl        #1,%d0
0582 
0583     cmpil       #0,%d0      // ...D0 < 0 IFF N IS ODD
0584     bge     NEVEN
0585 
0586 NODD:
0587 //--REGISTERS SAVED SO FAR: D0, A0, FP2.
0588 
0589     fmovex      %fp0,RPRIME(%a6)
0590     fmulx       %fp0,%fp0    // ...FP0 IS S = R*R
0591     fmoved      SINA7,%fp1  // ...A7
0592     fmoved      COSB8,%fp2  // ...B8
0593     fmulx       %fp0,%fp1    // ...SA7
0594     movel       %d2,-(%a7)
0595     movel       %d0,%d2
0596     fmulx       %fp0,%fp2    // ...SB8
0597     rorl        #1,%d2
0598     andil       #0x80000000,%d2
0599 
0600     faddd       SINA6,%fp1  // ...A6+SA7
0601     eorl        %d0,%d2
0602     andil       #0x80000000,%d2
0603     faddd       COSB7,%fp2  // ...B7+SB8
0604 
0605     fmulx       %fp0,%fp1    // ...S(A6+SA7)
0606     eorl        %d2,RPRIME(%a6)
0607     movel       (%a7)+,%d2
0608     fmulx       %fp0,%fp2    // ...S(B7+SB8)
0609     rorl        #1,%d0
0610     andil       #0x80000000,%d0
0611 
0612     faddd       SINA5,%fp1  // ...A5+S(A6+SA7)
0613     movel       #0x3F800000,POSNEG1(%a6)
0614     eorl        %d0,POSNEG1(%a6)
0615     faddd       COSB6,%fp2  // ...B6+S(B7+SB8)
0616 
0617     fmulx       %fp0,%fp1    // ...S(A5+S(A6+SA7))
0618     fmulx       %fp0,%fp2    // ...S(B6+S(B7+SB8))
0619     fmovex      %fp0,SPRIME(%a6)
0620 
0621     faddd       SINA4,%fp1  // ...A4+S(A5+S(A6+SA7))
0622     eorl        %d0,SPRIME(%a6)
0623     faddd       COSB5,%fp2  // ...B5+S(B6+S(B7+SB8))
0624 
0625     fmulx       %fp0,%fp1    // ...S(A4+...)
0626     fmulx       %fp0,%fp2    // ...S(B5+...)
0627 
0628     faddd       SINA3,%fp1  // ...A3+S(A4+...)
0629     faddd       COSB4,%fp2  // ...B4+S(B5+...)
0630 
0631     fmulx       %fp0,%fp1    // ...S(A3+...)
0632     fmulx       %fp0,%fp2    // ...S(B4+...)
0633 
0634     faddx       SINA2,%fp1  // ...A2+S(A3+...)
0635     faddx       COSB3,%fp2  // ...B3+S(B4+...)
0636 
0637     fmulx       %fp0,%fp1    // ...S(A2+...)
0638     fmulx       %fp0,%fp2    // ...S(B3+...)
0639 
0640     faddx       SINA1,%fp1  // ...A1+S(A2+...)
0641     faddx       COSB2,%fp2  // ...B2+S(B3+...)
0642 
0643     fmulx       %fp0,%fp1    // ...S(A1+...)
0644     fmulx       %fp2,%fp0    // ...S(B2+...)
0645 
0646 
0647 
0648     fmulx       RPRIME(%a6),%fp1    // ...R'S(A1+...)
0649     fadds       COSB1,%fp0  // ...B1+S(B2...)
0650     fmulx       SPRIME(%a6),%fp0    // ...S'(B1+S(B2+...))
0651 
0652     movel       %d1,-(%sp)  //restore users mode & precision
0653     andil       #0xff,%d1       //mask off all exceptions
0654     fmovel      %d1,%FPCR
0655     faddx       RPRIME(%a6),%fp1    // ...COS(X)
0656     bsr     sto_cos     //store cosine result
0657     fmovel      (%sp)+,%FPCR    //restore users exceptions
0658     fadds       POSNEG1(%a6),%fp0   // ...SIN(X)
0659 
0660     bra     t_frcinx
0661 
0662 
0663 NEVEN:
0664 //--REGISTERS SAVED SO FAR: FP2.
0665 
0666     fmovex      %fp0,RPRIME(%a6)
0667     fmulx       %fp0,%fp0    // ...FP0 IS S = R*R
0668     fmoved      COSB8,%fp1          // ...B8
0669     fmoved      SINA7,%fp2          // ...A7
0670     fmulx       %fp0,%fp1    // ...SB8
0671     fmovex      %fp0,SPRIME(%a6)
0672     fmulx       %fp0,%fp2    // ...SA7
0673     rorl        #1,%d0
0674     andil       #0x80000000,%d0
0675     faddd       COSB7,%fp1  // ...B7+SB8
0676     faddd       SINA6,%fp2  // ...A6+SA7
0677     eorl        %d0,RPRIME(%a6)
0678     eorl        %d0,SPRIME(%a6)
0679     fmulx       %fp0,%fp1    // ...S(B7+SB8)
0680     oril        #0x3F800000,%d0
0681     movel       %d0,POSNEG1(%a6)
0682     fmulx       %fp0,%fp2    // ...S(A6+SA7)
0683 
0684     faddd       COSB6,%fp1  // ...B6+S(B7+SB8)
0685     faddd       SINA5,%fp2  // ...A5+S(A6+SA7)
0686 
0687     fmulx       %fp0,%fp1    // ...S(B6+S(B7+SB8))
0688     fmulx       %fp0,%fp2    // ...S(A5+S(A6+SA7))
0689 
0690     faddd       COSB5,%fp1  // ...B5+S(B6+S(B7+SB8))
0691     faddd       SINA4,%fp2  // ...A4+S(A5+S(A6+SA7))
0692 
0693     fmulx       %fp0,%fp1    // ...S(B5+...)
0694     fmulx       %fp0,%fp2    // ...S(A4+...)
0695 
0696     faddd       COSB4,%fp1  // ...B4+S(B5+...)
0697     faddd       SINA3,%fp2  // ...A3+S(A4+...)
0698 
0699     fmulx       %fp0,%fp1    // ...S(B4+...)
0700     fmulx       %fp0,%fp2    // ...S(A3+...)
0701 
0702     faddx       COSB3,%fp1  // ...B3+S(B4+...)
0703     faddx       SINA2,%fp2  // ...A2+S(A3+...)
0704 
0705     fmulx       %fp0,%fp1    // ...S(B3+...)
0706     fmulx       %fp0,%fp2    // ...S(A2+...)
0707 
0708     faddx       COSB2,%fp1  // ...B2+S(B3+...)
0709     faddx       SINA1,%fp2  // ...A1+S(A2+...)
0710 
0711     fmulx       %fp0,%fp1    // ...S(B2+...)
0712     fmulx       %fp2,%fp0    // ...s(a1+...)
0713 
0714 
0715 
0716     fadds       COSB1,%fp1  // ...B1+S(B2...)
0717     fmulx       RPRIME(%a6),%fp0    // ...R'S(A1+...)
0718     fmulx       SPRIME(%a6),%fp1    // ...S'(B1+S(B2+...))
0719 
0720     movel       %d1,-(%sp)  //save users mode & precision
0721     andil       #0xff,%d1       //mask off all exceptions
0722     fmovel      %d1,%FPCR
0723     fadds       POSNEG1(%a6),%fp1   // ...COS(X)
0724     bsr     sto_cos     //store cosine result
0725     fmovel      (%sp)+,%FPCR    //restore users exceptions
0726     faddx       RPRIME(%a6),%fp0    // ...SIN(X)
0727 
0728     bra     t_frcinx
0729 
0730 SCBORS:
0731     cmpil       #0x3FFF8000,%d0
0732     bgt     REDUCEX
0733 
0734 
0735 SCSM:
0736     movew       #0x0000,XDCARE(%a6)
0737     fmoves      #0x3F800000,%fp1
0738 
0739     movel       %d1,-(%sp)  //save users mode & precision
0740     andil       #0xff,%d1       //mask off all exceptions
0741     fmovel      %d1,%FPCR
0742     fsubs       #0x00800000,%fp1
0743     bsr     sto_cos     //store cosine result
0744     fmovel      (%sp)+,%FPCR    //restore users exceptions
0745     fmovex      X(%a6),%fp0
0746     bra     t_frcinx
0747 
0748     |end